B.Sc. Semester III (Honours) Examination, 2018-19 MATHEMATICS

Course ID : 32111
Course Title : Theory of Real Functions and Introduction to Metric Space

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) If $\lim _{x \rightarrow a} f(x)=l$, then show that $\lim _{x \rightarrow a}|f(x)|=|l|$.
(b) Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by
$f(x)=1$, if x is rational
$=0$, if x is irrational
is continuous nowhere in $[0,1]$
(c) Prove that the function $f(x)=\frac{1}{x}, x \in(0,1]$ is not uniformly continuous on $(0,1]$.
(d) Is Rolle's theorem satisfied for $f(x)=x^{2}$ in $[-1,1]$. Justify your answer.
(e) Show that $\log (1+x)<x$ for $x>0$.
(f) Expand $\tan ^{-1} x$ (up to three terms).
(g) Give an example of a function f which satisfies the intermediate-value property on a closed and bounded interval $[a, b]$ but is not continuous on $[a, b]$.
(h) The function $d: R \times R \rightarrow R$ defined by $d(x, y)=|x-y|, \forall x, y \in \mathbb{R}$. Show that d is a metric on the set \mathbb{R}.
2. Answer any four questions:
(a) (i) If $f: S \rightarrow \mathbb{R}$ be differentiable at $c \in S$, then show that there exist $\delta>0$ and a positive constant M such that $|f(x)-f(c)| \leq M|x-c|, \forall x \in S \cap N_{\delta}(c)$.
(ii) A function f is differentiable on $[0,2]$ and $f(0)=0, f(1)=2, f(2)=1$. Prove that $f^{\prime}(c)=0$ for some c in $(0,2)$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f(x+y)=f(x)+f(y), \forall x, y \in \mathbb{R}$. Show that if f is continuous at $x=a$, then f is continuous for all $x \in \mathbb{R}$.
(c) State and prove Cauchy's mean value theorem and hence deduce Lagrange's mean value theorem.
(d) Obtain Maclaurin's infinite series expansion of $\log (1+x),-1<x \leq 1$. 5
(e) Examine the function $(x-3)^{5}(x+1)^{4}$ for extreme values.
(f) Let (X, d) be a metric space and A° denote the interior of A. Then show that $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$. Is $(A \cup B)^{\circ}=A^{\circ} \cup B^{\circ}$ true for any subjects A, B of X ? Give reason for your answer. $\quad 3+2=5$
3. Answer any one question:
$10 \times 1=10$
(a) (i) If $f(x)$ is a function defined on a deleted neighbourhood D of a point ' a ' such that $f(x) \geq 0 \forall x \in D$, then show that $\lim _{x \rightarrow a} f(x) \geq 0$, provided it exists.
(ii) If a function ' f ' is continuous in a closed interval $[a, b]$, then show that ' f ' is bounded in $[a, b]$. Also show that the converse of the above is not true in general.
(iii) Let (X, d) be a metric space such that X contains more than one point and $A \subseteq X$. Show that a point $x \in X$ is a limit point of A iff every open sphere $S(x . r)$ contains infinitely many points of A.

$$
3+(2+2)+3=10
$$

(b) (i) Give an example of a pair of functions f, g on $[a, b]$ such that both f, g are discontinuous on $[a, b]$, but $f+g$ is continuous on $[a, b]$.
(ii) Show that the function $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on $[a, \infty)$, where $a>0$; but not uniformly continuous on $(0, \infty)$.
(iii) State and prove Taylor's theorem with Lagrange's form of remainder.

